

ИСТОЧНИК ЗОНДИРУЮЩИХ ИМПУЛЬСОВ

ИЗИ-100

Руководство по эксплуатации

Санкт-Петербург 2019

Выпуск: 10.2019

© АО «ЭРСТЕД»

АО «ЭРСТЕД» оставляет за собой право на внесение изменений в настоящее руководство без предварительного согласования с кем-либо.

АО «ЭРСТЕД» не несет ответственности за технические или типографские ошибки или другие недостатки настоящего Руководства.

АО «ЭРСТЕД» также не несет ответственности за повреждения, которые прямо или косвенно обуславливаются использованием этого материала.

Содержание

0	БОЗНА	ЧЕНИЯ И СОКРАЩЕНИЯ	5
BI	ЗЕДЕНІ	ИЕ	5
1	HA3H.	АЧЕНИЕ	5
2	OCHC	ОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ	6
3	COCT	АВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ	7
4	УСТР	ОЙСТВО И РАБОТА	8
4	4.1 Наз⊦	начение прибора	8
4	4.2 Внеі	шний вид прибора	8
4	4.3 Расг	положение и назначение органов управления	9
4	4.4 Прин	нцип действия	9
	4.4.1	Поиск трассы и дефектов повреждения изоляции	10
	4.4.2	Поиск трассы и дефектов замыкания между жилами	10
5	УКАЗА	АНИЕ МЕР БЕЗОПАСНОСТИ	11
6	ПОДГ	ОТОВКА К РАБОТЕ И ПОРЯДОК ЭКСПЛУАТАЦИИ	12
(6.1 Поді	готовка к работе	12
(6.2 Поді	ключение генератора к трассе	12
(6.3 Вклн	очение прибора	12
(6.4 Hact	гройка режимов работы	12
	6.4.1	Установка частоты	13
	6.4.2	Установка формы выходного сигнала	14
	6.4.3	Установка диапазона согласования по нагрузке и уровня выхо	дного
	сигнал	а генератора	14
(6.5 Рабо	ота прибора в автоматическом режиме	15
(6.6 Рабо	ота прибора в ручном режиме	16
	6.6.1	Установка диапазона согласования с нагрузкой	16
	6.6.2	Увеличение уровня выходного сигнала	17
	6.6.3	Уменьшение уровня выходного сигнала	18
(6.7 Автс	оматическая защита	19
(6.8 Выкл	пючение прибора	19
(6.9 Уста	новка пользовательских частот	19
	6.9.1	Изменение значений пользовательских частот	20
	6.9.2	Установка заводских настроек пользовательских частот	20
7	BO3M	ЮЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	21

8	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	.21
8	.1 Обслуживание прибора	.21
9	ТРАНСПОРТИРОВАНИЕ И ПРАВИЛА ХРАНЕНИЯ	.21
10	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	.21
11	ОТМЕТКА О ПОСТАВКЕ	. 22

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

- РЭ руководство по эксплуатации
- ИЗИ источник зондирующих импульсов
- ИГ импульсная генерация
- НГ непрерывная генерация

ВВЕДЕНИЕ

Настоящее Руководство по эксплуатации (РЭ) является документом, удостоверяющим гарантированные предприятием-изготовителем основные параметры и технические характеристики прибора ИЗИ-100.

РЭ позволяет ознакомиться с устройством и принципом работы ИЗИ-100 и устанавливает правила по эксплуатации, соблюдение которых обеспечивает поддержание его в постоянной готовности к действию.

1 НАЗНАЧЕНИЕ

Источник зондирующих импульсов (далее генератор) – это переносной прибор, который штатно предназначен для работы совместно с приемниками ТИ-05-3, ТДИ-05М-3 и ТДИ-МА, а также другими приемниками в диапазоне рабочих частот от 300 до 9600 Гц, в качестве источника зондирующего сигнала в режиме непосредственного подключения к кабелю.

Генератор может работать как в режиме автоматической установки диапазона согласования по нагрузке и уровня выходного сигнала генератора, так и в ручном режиме, когда оператор имеет возможность управлять диапазоном согласования с нагрузкой и уровнем выходного сигнала генератора.

Прибор выполнен в ударопрочном, пыле-, влагозащищенном переносном корпусе, что позволяет использовать его в полевых условиях. Современное техническое исполнение, удобство и простота в обслуживании позволяют пользователю быстро освоить рабочие операции.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

Технические данные и характеристики прибора приведены в таблице 1.

Таблица 1

Характеристики	Значение	Примечание
Рабочие частоты	2.427 кГц	Заводские настройки для
	893 Гц	работы с приемниками
	8.928 кГц	ТИ-05-3, ТДИ-05М-3 и ТДИ-МА
Диапазон установки	300 Гц – 9,6 кГц	
рабочих частот		
Точность установки	Не более 1.0 Гц	
рабочих частот		
Шаг установки	Переменный – от	
рабочих частот	1.0 до 16 Гц	
Временной интервал	Пачка – 0,375 с	Постоянный в режиме НГ
следования	Пауза – 0,125 с	
зондирующих импульсов		
в режиме ИГ		
Максимальная выходная	100 Вт	Зависит от нагрузки
мощность		Диапазон нагрузок от 0.8 Ом до
		3,4 кОм
Электропитание	~220 В, 50 Гц	
Диапазон рабочих	-20°C40°C	При влажности до 95%,без
температур		конденсата.
Относительная	Не более 95%	
влажность воздуха		
Габаритные размеры, не	270 х 246 х 174 мм	
более		
Масса, не более	5,5 кг	Комплект поставки прибора
Срок службы	Не менее 3 лет	

3 СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ

В комплект поставки входят:

- Генератор	- 1 шт.
- Комплект проводов для подключения генератора к нагрузке	- 1 шт.
- Сетевой шнур	- 1 шт.
- Сумка для хранения и переноски комплекта	- 1 шт.
- Руководство по эксплуатации	- 1 шт.

Принадлежности, которые могут быть полезными и подготавливаются Потребителем:

- а) штырь заземления генератора (металлический стержень диаметром 10..15 мм и длиной 50 см) с подключенным проводом длиной 5..10 м;
- б) сигнальный провод генератора требуемой длины для подключения к трассе. При локализации металлических трубопроводов провод генератора удобно снабдить на конце контактной площадкой из магнитного материала, подключаемой к зачищенному месту с помощью магнита.

4 УСТРОЙСТВО И РАБОТА

4.1 Назначение прибора

Источник зондирующих импульсов – это переносной прибор, который штатно предназначен для работы совместно с приемниками ТИ-05-3, ТДИ-05М-3 и ТДИ-МА в качестве источника зондирующего сигнала в режиме непосредственного подключения к трассе.

4.2 Внешний вид прибора

Внешний вид прибора приведен на рис. 1.

рис. 1

4.3 Расположение и назначение органов управления

Все органы управления прибором расположены на лицевой панели (см. рис. 2).

Назначение органов управления и индикации (см. рис. 2):

- 1. Разъём подключения сетевого шнура;
- 2. Тумблер включения-выключения прибора;
- 3. Графический экран;
- 4. Вентиляционные отверстия;
- 5. Разъём выходного сигнала генератора;
- 6. Кнопки управления генератором.

4.4 Принцип действия

Генератор предназначен для проведения работ, связанных с поиском места расположения трассы, определения глубины её залегания, а так же с локализацией мест расположения дефектов на трассе. Под термином трасса, понимается подземная коммуникация, в конструкции которой присутствуют элементы частично или полностью состоящие из металла. Например, медножильные кабели связи, силовые кабели, бронированные оптические кабели,

водо-, нефте- и газопроводы. Под термином дефект на трассе, понимается такое повреждение трассы, при котором нарушается защитный покров трассы.

4.4.1 Поиск трассы и дефектов повреждения изоляции

Генератор подключается к трассе и заземляется штырем заземления на расстоянии в 5 – 10 метров от места подключения. При этом образуется замкнутая цепь для выходного сигнала генератора: прямой ток течет в трассе, распределенный обратный ток от трассы по грунту возвращается в точку заземления генератора. Конфигурация обратного тока определяется выбором места заземления, структурой и влажностью грунта, наличием посторонних электропроводящих коммуникаций и может быть весьма разнообразной.

Ток, текущий в трассе, создает вокруг нее магнитное поле, регистрируемое приемником. Форма и направление магнитного поля указывает на положение, глубину прокладки и направление трассы.

4.4.2 Поиск трассы и дефектов замыкания между жилами

Генератор подключается к короткозамкнутым жилам кабеля. В виду близости жил, прямой и обратные токи будут частично скомпенсированы, это означает быстрое убывание электромагнитного поля. Поле улавливается чувствительным приёмником. В месте возникновения короткого замыкания между жилами кабеля будет наблюдаться всплеск уровня сигнала, а затем - практически полное его исчезновение на расстоянии порядка 0,5 метра.

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

К работе с генератором допускаются лица, изучившие настоящее РЭ. При работе с источником зондирующих импульсов должны соблюдаться правила техники безопасности, распространяющиеся на работы с устройствами, несущими электрическое напряжение до 1000 В.

<u>Внимание!</u> Подключать выход генератора необходимо к <u>РАЗРЯЖЕННОМУ</u> силовому кабелю. Запрещается подключать или отключать нагрузку при включенном генераторе, т.к. напряжение на выходе генератора может достигать опасного для жизни уровня 600 В.

Категорически запрещается вскрывать корпус генератора с подключенным к нему внешним источником питания.

При работе на различных трассах персонал обязан соблюдать правила техники безопасности для работы на этом типе трасс.

<u>Внимание!</u> ЗАО "ЭРСТЕД" не рекомендует оставлять генератор включенным в электросеть без надзора. АО "ЭРСТЕД" не несет ответственности и не возмещает убытки, вызванные подобными действиями пользователя.

6 ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК ЭКСПЛУАТАЦИИ

6.1 Подготовка к работе

Необходимо извлечь прибор из упаковки. Внимательно проверить его состояние, и отсутствие видимых повреждений.

Начальное положение органов управления:

- сетевой шнур вставлен в разъём (1) и включен в розетку 220 В 50 Гц;

- тумблер (2) в положении «Выкл»;

- к разъёму "НАГРУЗКА" (5) подключена разряженная линия (либо одна из жил линии и контур заземления).

6.2 Подключение генератора к трассе

<u>Внимание!</u> Подключать выход генератора необходимо к РАЗРЯЖЕННОМУ силовому кабелю. Запрещается подключать или отключать нагрузку при включенном генераторе, т.к. напряжение на выходе генератора может достигать опасного для жизни уровня 600 В.

Для идентификации местопрохождения трассы, а также для поиска места повреждения типа: понижение сопротивления изоляции, заплывающий пробой, обрыв кабеля, - необходимо одну из клемм разъёма "НАГРУЗКА" (5) подключить к повреждённой жиле кабеля, а вторую - к контуру заземления.

Для идентификации местопрохождения трассы, а также для поиска места повреждения типа: короткое замыкание жил, обрыв кабеля, - необходимо обе клеммы разъёма "НАГРУЗКА" (5) подключить к повреждённым жилам кабеля.

6.3 Включение прибора

Включение прибора осуществляется переключением тумблера (2) в положение «Вкл». При этом на графическом экране (3) выводится заставка - логотип предприятия-изготовителя "ЭРСТЕД", которая сменяется заставкой с контактной информацией. Для перехода в рабочий режим необходимо нажать на левую кнопку "Установка режимов" (6).

6.4 Настройка режимов работы

Перед началом работы с генератором необходимо произвести настройку режимов работы. Главное меню изображено на рис. 3.

Экран функционально разбит на три части. В верхней строке ("состояние") отображаются значения параметров (значение частоты, формы выходного сигнала, способ выбора диапазона согласования и установки уровня выходного

сигнала генератора, а также диапазон согласования генератора по нагрузке). В нижней строке ("редактирование") отображаются пункты меню редактирования параметров. В средней части экрана отображаются либо параметры выходного сигнала генератора, либо выбираемые значения параметров генератора (в режиме редактирования параметров).

Управление прибором осуществляется с помощью двух кнопок "Установка режимов" (6), при этом левая кнопка отвечает за изменение параметра в строке "редактирование" в левой части экрана, а правая кнопка отвечает за редактирование выбранного параметра ("Изменить" в правой части экрана). Активный пункт меню выделяется в инверсном виде (см. параметр "Частота" на рис. 3).

6.4.1 Установка частоты

Для установки выходной частоты генератора необходимо:

 нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Частота";

- нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 4;

- для выбора рабочей частоты необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемой рабочей частоты (893 Гц, 2427 Гц, 8928 Гц);

- выйти из режима редактирования частоты, нажатием на левую кнопку "Установка режимов" (6).

рис. 4

6.4.2 Установка формы выходного сигнала

Генератор ИЗИ-100 позволяет работать как с приёмниками, работающими с импульсным сигналом (ТИ-05-3 и ТДИ-05-МЗ), так и с приёмником, работающим с непрерывным сигналом (ТДИ-МА).

Для установки формы выходного сигнала генератора необходимо:

 нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Форма";

- нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 5 или на рис. 6;

- для выбора формы необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемой формы сигнала ("Непрерывный" или "Импульсный" режимы);

- выйти из режима редактирования формы сигнала, нажатием на левую кнопку "Установка режимов" (6).

рис. 5

рис. 6

6.4.3 Установка диапазона согласования по нагрузке и уровня выходного сигнала генератора

Генератор поддерживает работу в двух режимах:

- автоматический режим позволяет прибору право устанавливать диапазон согласования по нагрузке и уровень выходного сигнала;

- ручной режим позволяет оператору устанавливать диапазон согласования по нагрузке и уровень выходного сигнала.

Для установки диапазона согласования по нагрузке и уровня выходного сигнала генератора необходимо:

- нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Управление";

- нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 7 или рис. 8;

 для выбора режима необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемый режим работы ("Автоматический" или "Ручной");

- выйти из режима редактирования, нажатием на левую кнопку "Установка режимов" (6).

рис. 7

рис. 8

6.5 Работа прибора в автоматическом режиме

Генератор может работать в режиме автоматической установки диапазона согласования по нагрузке и уровня выходного сигнала генератора. Для перехода в этот режим необходимо выполнить настройки п. 6.4.3.

При выборе автоматического режима, генератор запускает процесс постепенного увеличения амплитуды напряжения выходного сигнала генератора, начиная с диапазона согласования 1 ("1 Диап"), при этом осуществляется непрерывный контроль величины выходной мощности генератора (см рис. 9).

рис. 9

Если в выбранном диапазоне согласования при максимальной амплитуде выходного сигнала значение выходной мощности не превышает максимального значения (100 Вт ±2 %), то прибор переходит на следующий диапазон. При этом в течение одной секунды на экране отображается изображение с номером следующего диапазона согласования, например рис. 10.

рис. 10

Затем процесс постепенного увеличения амплитуды напряжения выходного сигнала генератора повторяется. Критерием окончания процедуры настройки в общем случае является максимально возможное значение выходной мощности. Максимальное время выполнения процедуры настройки не более одной минуты.

По завершении процедуры автоматической настройки возможно изменение частоты и формы выходного сигнала генератора.

6.6 Работа прибора в ручном режиме

Генератор может работать в режиме ручной установки диапазона согласования по нагрузке и уровня выходного сигнала генератора. Для перехода в этот режим необходимо выполнить настройки п. 6.4.3.

6.6.1 Установка диапазона согласования с нагрузкой Для установки диапазона согласования с нагрузкой:

 нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Диапазон";

- нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 11;

- для выбора диапазона (см. табл. 1) необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемого диапазона согласования (1 Диап, 2 Диап, 3 Диап, 4 Диап, 5 Диап);

- выйти из режима редактирования формы сигнала, нажатием на левую кнопку "Установка режимов" (6).

рис. 11

Параметры выходного сигнала генератора на согласованной нагрузке приведены в табл. 1.

табл. 1

Диапазон	Сопротивление нагрузки, Ом	Амплитуда выходного напряжения, В
1	0,8 ÷ 3,3	0 ÷ 18
2	3,3 ÷ 13,2	0 ÷ 36
3	13,2 ÷ 52,9	0 ÷ 73
4	52,9 ÷ 212	0 ÷ 146
5	212 ÷ 847	0 ÷ 291
6	847 ÷ 3387	0 ÷ 582

6.6.2 Увеличение уровня выходного сигнала

Для увеличения уровня выходного сигнала необходимо:

- нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Уровень ";

 нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 12;

- для увеличения уровня необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемого уровня выходного сигнала (Uвых, Pвых, Iвых);

Внимание! Если для установленного диапазона согласования достигается максимальный уровень выходного напряжения, но при этом не достигается максимального уровня мощности выходного сигнала, то прибор автоматически переходит на следующий диапазон согласования и начинает увеличение уровня выходного напряжения с нулевого значения.

рис. 12

6.6.3 Уменьшение уровня выходного сигнала

Для увеличения уровня выходного сигнала необходимо:

- нажимать левую кнопку "Установка режимов" (6) до появления пункта меню "Уровень ↓";

- нажать правую кнопку "Установка режимов" (6) - "Изменить" при этом на экране будет отображаться изображение, похожее на рис. 13;

- для уменьшения уровня необходимо нажимать на правую кнопку "Установка режимов" (6) до момента появления на экране требуемого уровня выходного сигнала (Uвых, Pвых, Iвых);

Для выхода из режима редактирования уровня выходного сигнала генератора необходимо, удерживая в нажатом состоянии левую кнопку "Установка режимов" (6), нажать и отпустить правую кнопку "Установка режимов" (6).

рис. 13

Внимание! Если для установленного диапазона согласования достигается нулевое значение выходного напряжения, то прибор автоматически переходит на предыдущий диапазон согласования и начинает уменьшение уровня выходного напряжения с максимального значения.

6.7 Автоматическая защита

Для предотвращения возникновения разрушающих токов на выходе генератора, в прибор встроена защита. При возникновении опасной ситуации генератор сбрасывает в нулевое значение амплитуду выходного сигнала и отключает выход генератора. При этом на экране будет отображаться следующее сообщение рис. 14.

> Внимание! Сработала защита усилителя мощности. Выключите прибор! Проверьте цепи на короткое замыкание.

рис. 14

6.8 Выключение прибора

Выключение прибора осуществляется переключением тумблера (2) в положение «Выкл».

6.9 Установка пользовательских частот

Для перехода в меню установки пользовательских частот необходимо после включения прибора нажать сначала на правую кнопку "Установка режимов" (6), а потом на левую кнопку "Установка режимов" (6). Прибор переходит в меню выбора режима установки частоты.

Установка	ЧАСТОТЫ 1
Эстановка	ЧАСТОТЫ 2
Установка	частоты З
ЗАВОЛСКИЕ	НАСТРОЙКИ
Выход	

рис. 15

Для продвижения по пунктам меню установки пользовательских частот используется левая кнопка "Установка режимов" (6). Для выбора соответствующего пункта меню – правая кнопка "Установка режимов" (6).

6.9.1 Изменение значений пользовательских частот

Выбор в меню установки пользовательских частот одного из пунктов "Установка частоты" переводит прибор в меню установки частоты. По умолчанию (заводские настройки) частота 1 – 2427 Гц, частота 2 – 893 Гц и частота 3 – 8928 Гц. Левая кнопка "Установка режимов" (6) предназначена для выбора направления изменения значения частоты. Собственно изменение значения частоты производится с помощью правой кнопки "Установка режимов" (6).

рис. 16

рис. 17

Для выхода из меню установки частоты необходимо, удерживая в нажатом состоянии левую кнопку "Установка режимов" (6), нажать и отпустить правую кнопку "Установка режимов" (6).

6.9.2 Установка заводских настроек пользовательских частот

Выбор в меню установки пользовательских частот пункта "Заводские настройки" запускает процедуру перепрограммирования внутренних параметров прибора, по окончании которой на экране прибора появится следующее сообщение:

рис. 18

Для выхода из меню установки пользовательских частот необходимо выбрать пункт "Выход". После этого на экране появится заставкой с контактной информацией. Для перехода в рабочий режим необходимо нажать на левую кнопку "Установка режимов" (6).

7 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Если в работе прибора ИЗИ-100 имеются нарушения, необходимо обращаться только на предприятие-изготовитель.

<u>Внимание!</u> Вскрывать прибор разрешается только квалифицированному персоналу.

8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1 Обслуживание прибора

ИЗИ-100 не требует специального технического обслуживания. Для устранения загрязнений поверхности корпуса можно использовать мыльный раствор или этиловый спирт. Использование агрессивных химических веществ (бензин, ацетон, растворители для красок) категорически запрещается.

9 ТРАНСПОРТИРОВАНИЕ И ПРАВИЛА ХРАНЕНИЯ

ИЗИ-100, упакованный в транспортную тару, транспортируется любым видом транспорта, кроме самолета, на любые расстояния в условиях установленных ГОСТ 15150-69.

Предельные климатические условия хранения прибора соответствуют группе 3 по ГОСТ 15150-69.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

АО "ЭРСТЕД" предоставляет покупателю гарантию на поставленные изделия на следующих условиях:

- 1. АО "ЭРСТЕД" гарантирует, что изделия в момент поставки не имеют никаких производственных и материальных недостатков, которые существенно снижали бы их ценность или работоспособность.
- 2. Во время гарантийного срока АО «ЭРСТЕД» ремонтирует по своему выбору недоброкачественные детали и узлы или заменяет их новыми.
- Требования на гарантию к АО "ЭРСТЕД" прекращаются по истечении 12 месяцев с даты отгрузки, указанной в настоящем РЭ.

- 4. Поставленные во время гарантийного срока детали и узлы имеют гарантию в оставшийся гарантийный срок, но не менее 6 месяцев.
- 5. Гарантийные работы проводятся исключительно АО "ЭРСТЕД".
- Гарантии не распространяются на недостатки или повреждения, возникшие вследствие того, что изделия неправильно хранились, транспортировались и использовались, или же ремонтировались или обслуживались не уполномоченными АО "ЭРСТЕД" лицами.

11 ОТМЕТКА О ПОСТАВКЕ

Данное изделие источник зондирующих импульсов ИЗИ-100 - проверено изготовителем, соответствует всем своим техническим характеристикам и является полностью работоспособным.

Серийный номер ИЗИ-100

ДАТА ПРОДАЖИ

АО "ЭРСТЕД" 196244, Санкт-Петербург а/я 28